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Abstract

The complementarity of two renewable energy sources, namely hy-
dro and wind, is investigated. We consider the diversification effect
of wind power to reduce the risk of water inflow shortages, an im-
portant energy security concern for hydropower-based economic zones
(e.g. Québec and Norway) Our risk measure is based on the probability
of a production deficit, in a manner akin to the value-at-risk, simula-
tion analysis of financial portfolios. We examine whether the risk level
of a mixed hydro-and-wind portfolio of generating assets improves on
the risk of an all-hydro portfolio, by relaxing the dependence on water
inflows and attenuating the impact of droughts. Copulas are used to
model the dependence between the two sources of energy. The data
considered, over the period 1958–2003, are for the province of Québec,
which possesses large hydro and wind resources.

Our results indicate that for all scenarios considered, any propor-
tion of wind up to 30% improves the production deficit risk profile of
an all-hydro system. We can also estimate the value, in TWh, of any
additional one percent of wind in the portfolio.
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energy security.
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1 Introduction

The variability of energy inflows, i.e. water inflows to the dams and power
plants, is the main item on a hydropower company’s risk list. A water inflow
shortage becomes a loss of profit, or, if severe enough, an energy security
concern. Large water reservoirs can smooth out seasonal variability, but
cannot replace water that is not there. The diversification of the primary
source of energy, e.g. adding thermal plants or, as we suggest, wind farms
to the hydro system, can be an interesting solution avenue to lower the risk
of hydro energy shortages.

Worldwide wind power production, both planned and installed, is growing
rapidly and wind is often seen as the best next step in renewable energy.
Many industrialized countries have established national plans to increase
wind power penetration on their territories. In the province of Québec
(Canada), current installations and calls for tenders by Hydro-Québec, the
state-owned and by far largest power producer, should bring the total wind
power capacity to 4000 MW by 2015, a level largely constrained by the
current grid configuration.

With research interest in wind power growing apace, it is not surprising
that the problem of wind intermittency has attracted much attention. Sev-
eral studies have appeared in the past years, specifically on coupling hydro
and wind systems to smooth out the output pattern, essentially using the
great flexibility of hydropower to compensate for the stochastic wind speed
behaviour. Some papers focus on isolated markets, i.e. small islands, (Bueno
and Carta, 2006; Kaldellis and Kavadias, 2001; Kaldellis, 2002) while others
explicitely model network constraints and/or market prices (Benitez et al.,
2008; Maddaloni et al., 2008; Korpaas et al., 2003; Angarite and Usaola,
2007). See also Castronuovo and Peças Lopes (2004a,b) and Jaramillo et
al. (2004). Modeling of the markets and of the generation assets is usually
simplified, though Førsund et al. (2008) and Lafrance et al. (2002) rely on
the full-scale, industrial optimization models used on their respective grids.
Reference (Lafrance et al., 2002) is a commissioned technical study assess-
ing the impact of introducing large-scale wind capacity introduction on the
Vermont power grid, with and without integration with the neighboring
Québec hydro capacity. The paper by Bélanger and Gagnon (2002) is to
our knowledge the only other recently published contribution to discuss the
integration of wind and hydro power in Québec. Its focus is different from
ours, in that it concentrates on the short-term problem of backing up wind
power with flexible (i.e., hydro) generation when wind is down; we focus on
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the long-term question of energy deficits and surpluses.

In all these papers, the common thread is the control of power fluctuations;
short term operations, or even building of new reservoirs, are, one way or
another, optimized to achieve this goal. Given the considerable operational
flexibility of hydropower, and the inflexibility of wind power, it is clear
that from this point of view, hydropower always lends the helping hand to
windpower, never the other way around.

The focus of our research is quite different from the previous literature on
wind and hydro complementarity, in that we investigate the uncertainty in
annual energy inflow. We are concerned with water inflow deficits in the long
run, and consider wind power as a diversification tool. The time series we
consider are comparatively long (46 years), though still fine-grained (hourly
data for the wind). We knowingly omit short-term, operational constraints;
naturally, the pertinence of our results is greater for lower wind penetration,
where this omission is easier to accept.

Our main purpose is to investigate the diversification effect of the energy
sources, from all-hydro to a mix of hydro and wind, to lower the risk of
energy deficits. Our approach is reminiscent of portfolio optimization, which
adjusts the percentage invested in each available asset to minimize risk under
a fixed average return constraint. We will indeed call “portfolio” any mix of
wind and hydro generation assets that receives some fixed average annual
energy inflows.

The risk measure we use is a low quantile (α = 2%) of the probability dis-
tribution of combined energy inflows, which is in line with the hydro inflows
risk management policy at Hydro-Québec. In other words, our measure of
risk is the energy deficit that occurs once every fifty years. Quantile-based
risk measures, such as value-at-risk, expected shortfall and variants, are also
the cornerstone of modern financial risk management (see e.g. McNeil et al.
2005).

Using statistical models calibrated to observed hydro and wind data, we
simulate the annual energy inflows to the hydro system of Hydro-Québec,
and to a wind power system dispersed at ten locations in Québec. We
then simulate the energy inflows to portfolios that combine together the two
“pure” systems, with various weighting. These simulations are the base of
our risk analysis.

Since the diversification effect hinges on statistical independence between
the two energy sources, some care is taken in its modeling and we use a cop-
ula approach. The merits of the copula approach for multivariate modeling
in hydrology are described in Favre et al. (2004).
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The following Section 2 describes the data and their statistical modeling,
including the copula treatment. Section 3 explains our risk analysis approach
and presents a discussion of the results. Section 4 concludes the paper. A
technical appendix provides the basic definitions and tools of the copula
approach.

2 Modeling of water and wind inflows in Québec

Our study is focussed on the province of Québec, in eastern Canada. Québec
has abundant hydropower resources, and equally abundant, —but essentially
untapped—, wind-power resources.

Our modeling approach, i.e., copulas, separates the treatment of the marginal
distributions —of water inflows, and wind inflows— from the modeling of
their dependence. We therefore provide data and model details on the two
inflows and the dependence in three separate subsections.

2.1 Water inflows

Gathering water inflows data to a specific set of hydropower plants can be a
difficult task as they are rarely publicly available. It is even more difficult if
one needs to infer past inflows to dams before they were even built, i.e. on
the basis of meteorological and terrain considerations. We were fortunate
that such a time series of inflows had become publicly available through the
hearings of the Régie de l’énergie du Québec in 2004, see Régie de l’énergie
du Québec (2004). The series was computed by Hydro-Québec and gives the
annual inflows for 1954 to 2003, in terawatt-hours, to all its hydro-electric
plants running in 2003.1 Note that an annual inflow does not necessarily
correspond to the energy produced that year: water can be used from the
previous year, or kept for the next, for example. Note also that the hearings
were open specifically to address Hydro-Québec’s energy security concerns
and proposed solutions. Higher frequency data were not available; however,
the dams are large enough to considerably attenuate the interest for seasonal,
intra-year complementarity.

Figure 1 show the series as surpluses and deficits against the series average
of almost 189 TWh. We will refer to the set of hydro-electric plants just
mentionned as the “hydropower system”.

Two periods stand out: the years 1965 to 1983 average more than 203
TWh, while the years 1984 to 2003 average less than 180 TWh. We will
pay some attention to these two subperiods, to which we shall refer as the
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Figure 1: Water inflows, in TWh and for the period 1958-2003, to the
hydropower assets of Hydro-Québec running in 2003. Displayed as surpluses
and deficits against the series arithmetic average of 189 TWh.

“high inflows” and “low inflows” periods. In fact, we use the data to define
three scenarios: one based on “all data” (1958–2003), one on “high inflows”
(1965–1983), and one on “low inflows” (1984–2003).

A statistical analysis was performed on the data to find an appropriate
distribution and its parameters. We used a standard maximum likelihood
approach, and fitted the complete series as well as the two sub-periods men-
tioned above. The distributions considered were the normal, lognormal and
gamma distributions. In all cases, the lognormal distribution provided the
best fit; the parameters for each period are provided in Table 1.

Period
All data High inflows Low inflows

1958–2003 1965–1983 1984–2003

Average inflow 188.9 TWh 203.3 TWh 179.7 TWh
Std deviation 20.8 TWh 17.8 TWh 14.7 TWh

µ 5.235 5.311 5.188
σ 0.1099 0.0875 0.0818

Table 1: Basic statistics and fitted lognormal distribution parameters for
the water inflows

We confirmed the adequacy of the fits via quantile-quantile plots (not
shown). The probability density functions for 1958–2003 and the two sub-
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periods are illustrated on the left-hand side of Figure 2. A question that
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Figure 2: Fitted lognormal probability densities for hydro and wind inflows

arises naturally is why the data were modelled as static and not as a time
series. Autocorrelation tests were run on the series; only the lag 1 Pearson
test was significant at the 5% level, with a p-value of 3.6%. Kendall’s and
Spearman’s tests for lag 1 autocorrelation both had a p-value of 6%. Note
that the 1996 study of Perreault et al. reported similar results with (slight)
significant lag 1 autocorrelation for the aggregated inflows to eight water-
sheds in Québec. In any case, a short series with little autocorrelation does
not lend itself to a meaningful time series model. The same argument also
steered us towards the static modelling of wind energy inflows, which now
follows..

2.2 Wind inflows

Our model is based on hourly wind speed data over the period from 1958
to 2003. For the sake of simplicity, we accounted for no other factor than
hourly speed; direction, humidity, temperature, etc. were not included in
the model. The meteorological convention followed by Environment Canada
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Sites Years Climate ID WPD

Bagotville 1953–2003 7060400 166
Kuujjuarapik 1957–2003 7103536 269
La Grande

Nitchequon 1953–1985 7095480 176
La Grande IV 1985–2003 7093GJ3 —

Maniwaki

Maniwaki 1953–1993 7034480 20
Maniwaki 1993–2003 7034482 20

Mont-Joli 1953–2003 7055120 356
Roberval 1958–2003 7066685 144
Rouyn 1954–2003 7086720 76
Sept-Iles 1953–2003 7047910 —
Schefferville 1953–2003 7117825 —
Val-d’Or 1955–2003 7098600 —

Table 2: Wind measurement locations, years for which data are available,
Environment Canada Climate Identification number, and wind power den-
sity.

is to measure wind speed at a height of 10 m, and we found no evidence of
departure from this policy. The data for a specific hour at a specific site are
usually the mean of at least a few observations during that hour; our model
assumes that the wind was blowing constantly at that average speed, for the
duration of the hour. Note that wind speeds were then adjusted to account
for turbine height, see details below.

Ten sites were chosen over the province’s territory, on the basis of avail-
ability of data, quality of data, and relevance of the geographic area for
wind power production. The sites are not windfarm sites, most are in fact
airports; but long statistical series are simply not available elsewhere. In
two cases, we had to bridge the data of two different sites to complete the
series. Holes in the series, unavoidable in such large databases, were re-
placed by their nearest (earlier or later) value2. Details appear in Table 2,
which includes the years of availability of the data, the Environment Canada
climate identification numbers and the wind power density (WPD) in watts
per square meter, as computed in Ilinca et al. (2003). Wind power density
is not available for all sites.

Energy inflow for each site was derived from the power curve of the Vestas
V80 IEC Class I turbine, a 1.8 MW device that has been installed in Québec
in recent years. Assessing the best turbine for each site is a complex task,
requiring data we do not have; we simply used the same turbine for each
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site. The V80’s power curve is easily available on Vestas’s website. Cut-
in and cut-out speeds are respectively 4 and 25 meters per seconds (m/s).
The density of air was assumed constant at 1.225kg/m3. Wind speed was
extrapolated at a hub height of 67 m, one of the standard heights for the V80.
The extrapolation was done with the power law3 with exponent 1/7, i.e. wind

speeds at 67 m are the wind speeds at 10 m multiplied by (67/10)
1

7 ≈ 1.312.
See, for example, Ilinca et al. (2003) for more details on height extrapolation.

The yearly inflows of the various sites, averaged over the 46 years, are
reasonably comparable between themselves, with the exception of Maniwaki
perhaps. The Mont-Joli site provided the highest inflow, and Maniwaki the
weakest, with a ratio of thirteen to one; other inflows were much closer to
that of Mont-Joli, with the highest ratio at 3.6.

The total energy inflow of the 10-turbine system, in TWh, is displayed in
Figure 3 as surpluses and deficits against the series average of 0.0341 TWh.
We will refer to this system as the “wind-power system”.

The inflow to the wind-power system is obviously of a much smaller scale
than that of the hydropower system (compare Figure 1 and Figure 3); we
deal with this later, as for now it does not affect the copula dependence
analysis of Section 2.3.

In Figure 3, notice the sharp apparent “regime change” occuring in 1980–
1981: the average yearly inflow for the 1958–1980 period is 0.039 TWh,
compared to 0.029 TWh for the 1981-2003 period. This result has been
observed before, but not explained (Lauzon, 2003). Just as surprising, is
the almost exact parity of the wind “high–low” periods with their hydro
counterpart. While we lack the expertise to interpret these statistics from a
meteorological point of view, we will definitely investigate this phenomenon
in our risk analysis. We decided to draw a common cutting point after 1983
for both hydro and wind inflows series, and use the previously introduced
“high inflows” (1965–1983) and “low inflows” (1984–2003) for both series.
“All data” always refers to 1958–2003, which adds seven early years to the
two subperiods.

The wind energy inflows data were analyzed, again with a maximum like-
lihood approach, which fitted the normal, lognormal, and gamma distribu-
tions. All three distributions yielded very similar likelihood values. Because
it more naturally accounts for the necessarily positive values and for the
sake of simplicity, the lognormal distribution was used for all three cases.
Parameters are as displayed in Table 3.

The probability density functions derived from the fitted distributions are
illustrated on the right-hand side of Figure 2.
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Figure 3: Wind inflows, in TWh, and for the 1958-2003, to a set of ten wind
turbines at ten locations in Québec. Displayed as surpluses and deficits
against the series average of 0.034 TWh.

2.3 Dependence of hydro and wind energy inflows

A first look at the bivariate data is provided in Figure 4, where the periods
of high and low inflows are also displayed.

Copulas allow one to better capture the dependence structure of random
variables that do not follow gaussian distributions. They also allow us to
characterize the dependence separately from the marginal distributions so
that the two steps are carried sequentially.

Basic technical results on multivariate modeling with copulas appear in
Appendix A. We discuss in this section only what is specific to our study.

Five classical copulas were considered: the Clayton, Frank, Gumbel, Nor-
mal and t copulas. Together, they cover a wide range of dependence struc-
tures. Favre et al. (2004) use the Clayton and Frank copulas in their mod-
eling of hydrological flow and volume, and Coles and Tawn (1994) use the
Gumbel copula. This latter copula is also a member of the bivariate ex-
treme value class, the only one among our five. The Normal and t copulas
are examples of elliptical copulas, and have been found to be quite useful in
financial applications where some modeling issues mirror those in hydrolog-
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Period
All data High inflows Low inflows

1958–2003 1965–1983 1984–2003

Average inflow 0.0341 TWh 0.0365 TWh 0.0288 TWh
Std deviation 0.0056 TWh 0.0030 TWh 0.0015 TWh

µ −3.392 −3.315 −3.547
σ 0.1626 0.0816 0.0507

Table 3: Statistics and fitted lognormal distribution parameters for the wind
inflows
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Figure 4: Wind inflows vs hydro inflows

ical applications, see McNeil et al. (2005).

The choice of a specific copula and its parameter(s) was performed by max-
imum likelihood estimation through the “inference functions from margins”
approach (see the appendix for details).

Copulas go beyond the usual correlation (i.e. the Pearson linear correla-
tion) to describe dependence. It is however still useful to have some numer-
ical measure of the degree of dependence that applies equally to all sets of
data and is not dependent on the marginal distributions (see Embrechts et
al. 2002). Kendall’s tau coefficient and Spearman’s rank correlation are the
most common such measures and both run from 1 (perfect dependence) to
0 (independence) to −1 (perfect anti-dependence).

The results of our analysis were as follows. In terms of likelihood, the t

copula was best for both “all data” and the low inflows period. The Normal
copula best matched the high inflows period data. Details of the parameters
appear in Table 4. The table also provides the values of Kendall’s tau.
The “all data” period displays moderate positive dependence, and the “low
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Figure 5: Simulated values for the dependence structures found for each
scenario: all data, high inflows, low inflows

inflows” period slightly more. In the high inflows period the series show
very small, negative dependence; this near-independence was echoed by the
fitted parameters for the Clayton and Gumbel copulae, at 0.0001 and 1.0000
respectively. Some intuition on the dependence structure can be gained from

Period
All data High inflows Low inflows

1958–2003 1965–1983 1984–2003

Copula t(ρ, ν) Normal(ρ) t(ρ, ν)
ρ 0.3722 −0.0350 0.5943
ν 2.37 — 2.35

Kendall’s τ 0.243 -0.022 0.405

Table 4: Copulas, fitted distribution parameters

the general look of the dispersion graphs in Figure 5. Each dot represents
the simulation of a pair of joint, uniformly distributed random variables,
with dependence structure as per Table 4. (Since the effect of the marginal
distribution is removed, neither of the two axes corresponds to hydro nor
wind). Notice the “X” shape of the t copula (all data and low inflows), and
the uniform coverage of the normal copula (high inflows) due to the very
low dependence level.

3 Simulation-based risk analysis

The goal of the statistical analysis was to allow a simulation-based risk
analysis of portfolios of generating assets, with varying proportions of wind
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and hydro: all hydro, all wind, or mixed of any weighting. One can also
find the proportion of hydro and wind which minimizes any measure of risk.
Simulations were performed for the three scenarios derived from the three
periods identified in Section 2.1: “all data” (1958–2003), “high inflows”
(1965–1983), and “low inflows” (1984–2003).

It is important to stress that all portfolios, irrespective of the wind/hydro
weighting, must have the same average annual energy inflow. It is the only
way to a significant risk comparison: comparing the quantiles of portfolios
with different average inflows is nonsensical. Some scaling of the generation
assets will be required, to which we return shortly.

Note that we do not account for the cost of changing the portfolio, e.g. the
cost of building wind capacity. Our interest is in the (risk management)
value of the portfolios; pricing the cost of a change of weights is outside the
scope of this paper.

3.1 Simulation of energy inflows for a hydro/wind portfolio

To simulate the energy inflow of a portfolio of hydro and wind generating
assets, for one year and one of the scenarios, we proceed as follows. First, two
(copula-) dependent, uniformly distributed variables are generated. Second,
through the inversion of the respective marginal cumulative distribution
functions, the uniforms are given the appropriate marginal distributions
associated to hydro and wind (see Sections 2.1 and 2.2). Both steps are
easily performed using built-in functions any of a variety of softwares (we
used Mathwork’s Matlab). The procedure provides us with two simulated
energy inflow values: one for what was called the hydropower system of
all hydro generation assets installed in Québec in 2003, and one for the
wind power system consisting of ten wind turbines at ten locations in the
province4. The two values are “correctly dependent”, that is, in line with
historical data. However, a scaling of the wind system is necessary to ensure
that any portfolio with wind power provides on average the same energy
inflow as the hydro system. Any simulated wind energy inflow is therefore
scaled by the appropriate, constant factor which is the ratio of the average
inflow of the hydro system by that of the wind system. When all data are
considered, the factor is 188.9/0.0341; for the high inflows and low inflows
scenarios, it is respectively 203.3/0.0365 and 179.7/0.0288. This effectively
ensures that any hydro-wind energy portfolio provides 188.9 TWh (resp.
203.3 TWh and 179.7 TWh) on average. Note the simplifying assumption
that more turbines at the windpower sites would produce more energy in
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exact proportion of the number of turbines.

Adding the hydro inflow and the scaled-up wind inflow, each multiplied
by its respective weight in the portfolio, provides one simulation of an en-
ergy inflow to the portfolio of generating assets. For all three scenarios,
we simulated several one-year energy inflows for various portfolios with hy-
dro weighting 0%, 1%, 2%,... 100%, the balance being wind of course. One
thousand one-year simulations per portfolio were sufficient to obtain stable
results.

For each set of statistical parameters and each portfolio, we then identi-
fied the two-percent quantile, that is, the lowest-in-fifty-years energy inflow;
this is our risk measure. Years with high inflows do not constitute a risk
management issue, not in our yearly perspetive, since Québec easily sells its
surplus to the neighboring states and provinces5. The results are presented
in Figure 6; the quantiles for the 101 considered weightings appear on the
same graph, one graph for each scenario. Included for each curve is a 95%
confidence interval6
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Figure 6: Two-percent quantiles of the energy inflows distribution VS hydro
percentage in the generating assets portfolio. Results for all data, high
inflows and low inflows

3.2 Discussion of the results

We first give some intuitive insights on the results and follow up with more
detailed points.

Recall that the quantile is our measure of risk: the higher, i.e., better, this

13



worst-in-fifty-years inflow, the lower the risk of the generation portfolio. In
other words, the quantiles represent energy inflow thresholds: there is a 2%
probability that on any given year the actual energy inflow will be lower
than the quantile, which would be considered a significant energy deficit
with respect to the average annual inflow. The higher this quantile is, the
closer it is to the average inflow (which is fixed by construction), the more
certain it is that “acceptable” levels of energy inflows will be observed.

In all three scenarios, the minimum risk (i.e. highest value of the quantile),
is obtained for a mixed portfolio which includes both wind and hydro gener-
ation. More specifically, using the coefficients of variation (i.e. the standard
deviation divided by the average, in Tables 1 and 3) and the dependence
measure in Table 4, we can say that:

All data The relatively weak dependence between wind and hydro favors
the diversification effect, but the longer tails of the wind energy inflow
distribution quickly bear on the riskiness of any portfolio with a sizable
wind component.

High inflows Both wind and hydro inflows are similarly uncertain, and
their near-independence favours the diversification effect, so that the
less risky portfolios include equal parts of wind and hydro.

Low inflows The main effect is that wind is relatively less uncertain than
hydro, so that portfolios with more wind are less risky; the diver-
sification effect is smaller because of the relatively greater positive
dependence (recall Kendall’s τ at 0.40), so less convexity is observed.

Note that the risk associated to the “all data” scenario (1958–2003) is greater
than for the other two scenarios, as the low values of the quantile (—mostly
below 150 TWh—) indicate. This is perfectly expected, given the nature of
the two subperiods, which were chosen precisely on the fact that the inflows
are relatively similar.

The nonnegligible widths of the confidence intervals prevent any definitive
numerical analysis. However, within these constraints, the following obser-
vations can be made.. Note that any portfolio with more than 20% or 25%
of wind is hardly realistic for any reasonable time horizon, given the actual
situtation in Québec; we will return to this point shortly.

All data Risk is minimized around 12% wind, with the two-percent quan-
tile improved by 1 TWh versus no wind at all. Any percentage of wind
between 1% and 29% is better than no wind at all, with respect to the
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risk measure. More than 30% of wind can make the portfolio riskier
or much riskier.

High inflows Risk is minimized for portfolios with 52% to 56% wind, with
the two-percent quantile improved by more than 10 TWh. Any per-
centage of wind is better than no wind at all, with respect to the risk
measure.

Low inflows Risk is minimized for portfolios with 95% to 100% wind, with
the two-percent quantile improved by more than 10 TWh. Any per-
centage of wind is better than no wind at all, with respect to the risk
measure.

A point can and should be made that some of the above results are useless,
in the sense that portfolios with high proportions of wind are unfeasible, for
operational and other reasons. It is then more enlightening to compute
slopes of the graphs in Figure 6, i.e. the rates of improvement of the risk
measure over the lower end of wind energy penetration, say 0%–20%. The
slopes (of the secant lines through each subinterval) are as follows.

All data For every percentage point of wind between 0% and 10%, the
quantile improves by 0.12 TWh. The quantile is stable between 10%
and 15%. Between 15% and 20% wind, every percent of extra wind
makes the quantile 0.05 TWh worse.

High inflows For every percentage point of wind between 0% and 20%,
the quantile improves by 0.31 TWh.

Low inflows For every percentage point of wind between 0% and 20%, the
quantile improves by 0.16 TWh.

Such numbers could be of use when drafting an energy policy on wind pen-
etration in a hydropower area. The main point is the following. Under a
quantile-based risk management policy, a certain amount of water must be
kept in reserve to face an eventual drought period; the rest can be sold for a
profit. This reserve amount is based on the volatility of inflows (and other
factors eventually, like demand). By moving to a mixed portfolio through
the installation of some wind power, the volatility is lower, the necessary
reserve is lower, and the extra energy can be sold on the market. A sec-
ond point is that less volatile energy inflows make it possible to take more
lucrative selling positions.
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4 Conclusion

In this study, we performed a long-term statistical analysis of wind power
variability for a set of fictive wind farms in Québec. Using hydro energy
inflows provided by state-owned Hydro-Québec, we were able to simulate
the energy inflows to portfolios of energy assets that include both wind and
hydro. Of particular interest was the variability of these inflows with respect
to the proportion of wind and hydro.

Somewhat surprisingly, wind and hydro inflows presented a common cycli-
cal pattern with two periods of about twenty years each, during which both
wind and hydro were much above average (“high inflows”, 1965–1983) then
much below (“low inflows”, 1984-2003). We analysed three scenarios, two
based on the latter periods as well as a scenario based on all available data
(1958–2003). One unexpected conclusion of our study is that relying on the
“last twenty years” of inflows data may be quite misleading, if long term
cycles do exist.

In all three scenarios, wind power provided a substantial diversification
effect, and improved the risk profile for any wind penetration up to 30%. The
“risk value” of wind, up to 15% wind penetration and at the 2% quantile of
annual energy inflows, ranged from 0.12 TWh to 0.31 TWh per percentage
point, depending on the scenario. (The values of average energy ouput
ranged between 180 and 203 TWh, depending on the scenario)

The intermittency of wind power puts it at an important operational dis-
advantage in the face of hydro’s great flexibility, when it comes to providing
capacity at each moment in time. However, it appears that wind can help im-
prove energy inflow volatility, even in cases where it’s own volatility is higher
than that of hydro. It is suggested that the value of the diversification effect
should be taken into account when the net cost of wind implementation is
computed.

Further topics along this line of research would include the possibility of
unequally distributed wind generating assets with relatively more turbines
at some sites than others. The seasonal complementarity (high winds during
the cold season which has low water inflows) could be investigated, if hydro
data were available.
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A Fundamentals of (modeling multivariate joint
distributions with) copulas

Our main tool in establishing the dependence structure between wind and
water inflows is the copula. A complete presentation of the topic is clearly
out of scope, but basic results on the copula formulation to multivariate
distributions are presented below. Further details are readily available in
recent publications, see Joe (1997); McNeil et al. (2005) or Genest and Favre
(2007).

A.1 The copula function

A copula is a joint distribution function of standard uniform random vari-
ables. That is,

C(u1, . . . , ud) = Pr{U1 ≤ u1, . . . , Ud ≤ ud},

where Ui ∼ U(0, 1) for i = 1, . . . , d. LetX1, . . . , Xd be random variables with
joint distribution function F and continuous marginal distribution functions
Fi, i = 1, . . . , d. Sklar (1959) showed that, for any multivariate distribution
F , there exists a unique copula C which can be written as

C(u1, . . . , ud) = F (F−1

1
(u1), . . . , F−1

d (ud))

where the quantile function F−1

i is defined by F−1

i (u) = inf{x : Fi(x) ≥ u}.
It is also easy to see that, if C is a copula function, and F1, . . . , Fd are
arbitrary distribution functions, then F defined by

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (1)
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is a multivariate distribution function with marginal distribution functions
F1, . . . , Fd.

For the sake of simplicity, we now restrict ourselves to the copulas that
were chosen to model our data, i.e. the bivariate (d = 2) versions of the
Normal, and t copulas. Definitions for the other copulas used in this paper
(the Clayton, Frank, and Gumbel) are easily found in the literature. The
copulas are defined as:

the Normal copula,

C(u1, u2) = Φρ(Φ
−1(u1),Φ−1(u2)), (2)

where Φρ is the distribution function of a bivariate standard normal
distribution with correlation ρ, and Φ is the N(0, 1) distribution func-
tion, and

the t copula,

C(u1, u2) =

∫

t
−1
ν

(u1)

−∞

∫

t
−1
ν

(u2)

−∞

Γ
(

ν+2
2

)

Γ
(

ν

2

)

πν
√

1− ρ2

(

1 +
x′P−1x

ν

)−
ν+2

2

dx1dx2

(3)

where t−1
ν is the quantile function of a univariate (Student-) tν distri-

bution, x = (x1, x2)′, and P is the correlation matrix

P =

(

1 ρ
ρ 1

)

.

A.2 Measures of dependence

It is useful to have some measure of the degree of dependence provided
by a given copula. The usual Pearson linear product-moment correlation
depends on the marginal distributions and is not a desirable measure of
association for non-normal multivariate distributions. Kendall’s tau coeffi-
cient and Spearman’s rank correlation are the most widely used measures
of dependence for non-normal multivariate distributions. Spearman’s rank
correlation is defined as the (usual, linear) correlation applied to the ranks
of the data set

ρS = ρ (F1(x1), F2(x2))

and Kendall’s tau coefficient is defined as a difference of probabilities that
the random variables “move together”:

τ = Pr ((X1 −X
∗
1 )(X2 −X

∗
2 ) > 0)− Pr ((X1 −X

∗
1 )(X2 −X

∗
2 ) < 0)
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where (X∗1 , X
∗
2 ) is an independent copy of (X1, X2). We chose Kendall’s tau

as our measure of dependence and have τ(ρ) = 2/π arcsin ρ for the Normal
and t copulas.

A.3 Likelihood and estimation: choosing a model and its
parameter(s)

Consider a copula-based parametric model (1) for the random vector Y
where Fi are marginal models, e.g. normal or lognormal, and C as in one of
(2)-(3). Let θ be the p× 1 dimensional vector of unknown parameters, e.g.
θ = (µ1, σ1, µ2, σ2, ρ, ν) in the case of two lognormal margins linked by a t

copula, and Θ be the parameter space. A fundamental tool in estimation is
the likelihood for θ based on the observed data y. We write

L(θ) = f(y; θ), θ ∈ Θ (4)

where f(y; θ) is the density function associated with (1), the density being a
function of θ and y, but is regarded as a function of θ for fixed y in (4). The
maximum likelihood estimate (MLE) of θ is a value of θ that maximizes the
likelihood L(θ), or equivalently the log likelihood ℓ(θ) = lnL(θ). We use θ̂
to denote the MLE, which means that

L(θ̂) ≥ L(θ) θ ∈ Θ.

(the likelihood is better with θ̂ then with any other θ ∈ Θ)

Given n independent observations and applied to distribution (1), the
expression for the log likelihood becomes

ℓ(θ) =
n
∑

j=1

ln c
(

F1(xj
1
), . . . , Fd(x

j
d)
)

+
n
∑

j=1

d
∑

i=1

ln fi(x
j
i ) (5)

where c is the density of the copula C and fi, i = 1, . . . , d, are the densities
of the marginal distributions Fi, i = 1, . . . , d. Maximizing (5) is known as
the exact maximum likelihood method.

The exact maximum likelihood approach jointly estimates the parameters
of the margins and the parameters of the dependence structure. However,
the copula representation splits the parameter vector θ into marginal pa-
rameters and dependence parameters, say θ = (θm1, . . . , θmd, α). The log
likelihood (5) could then be written as

ℓ(θ) =
n
∑

j=1

ln c
(

F1(xj
1
; θm1), . . . , Fd(x

j
d; θmd);α

)

+
n
∑

j=1

d
∑

i=1

ln fi(x
j
i ; θmi). (6)
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In a first instance, we could perform d separate estimations, one for each
univariate marginal distribution, i.e. obtain

θ̂mi = argmax
n
∑

j=1

ln fi(x
j
i ; θmi)

for i = 1, . . . , d and then estimate α given the previous estimates

α̂ = argmax
n
∑

j=1

ln c
(

F1(xj
1
; θ̂m1), . . . Fd(x

j
d; θ̂md);α

)

.

This approach is known as the method of inference functions for margins or
IFM, and it is the approach taken in this paper.

Notes

1The series in fact runs back to 1943, but since our wind data are sufficient from 1958
only, we did not use the earlier hydro data.

2Overall, less than 3.5% of the data are missing. This missing data are however largely
concentrated on site “Rouyn” and to a lesser extent, site “Maniwaki”. In both cases, the
“holes” are sufficiently well dispersed; moreover, these sites are two of the lower producers.
To confirm the minimal impact of these two sites which concentrate most of the missing
data, we re-ran all tests without “Rouyn”, and without both “Rouyn” and “Maniwaki”,
and while the estimated parameters changed slightly, the quantiles (figure 6) were virtually
identical

3Exponent 1/7 comes from fluid mechanics theory, and applies to the theoretical case of
a plane (i.e. an abstract, two-dimensional surface). In an actual analysis of wind capacity,
the terrain characteristics must be accounted for, but without such details, exponent
1/7 is considered the only reasonable value. In wind power applications, it is usually a
conservative choice (i.e. slightly smaller than the site-specific value).

4The choice of identical capacity at each site was made for the sake of simplicity. A
recent paper (Drake and Hubacek, 2007) on the topic of dispersion of wind facilities and
the allocation of capacity (MW) to them addresses these issues directly.

5In a day-to-day perspective, the Spring meltdown of snow and ice must be correctly
managed however.

6Maximum likelihood estimators (MLE) converge in distribution to a normal distri-
bution with mean equal to the true parameter value and covariance matrix equal to the
inverse of the Fisher information matrix. The latter is easy to estimate as the Hessian of
the (log) likelihood function evaluated at the MLE values. Confidence intervals are based
on a parametric bootstrap (resimulations) using this asymptotic normal distribution to
account for the variability in our marginal and copula parameter estimates.
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